Климатогенный фактор
Страница 2

Минимальная температура воздуха составила 2,1ºС в 1992 г., а максимальная – 5,9ºС в 1971 г. Если сравнивать тенденции изменения температуры по периодам, то c 1960-х гг. до 1990-х гг. колебания осуществлялись в диапазоне 4ºС. В начале 90-х гг. диапазон колебаний средних температур составил 3ºС, а с конца 90-х гг. снова наблюдается повышение показателей до 4,2ºС-4,3ºС. Отмечается несовпадение данных по многолетним наблюдениям: при увеличении температуры за указанный период наблюдений выявляется, наоборот, падение температуры. Данный факт можно объяснить тем, что в начале 90-х годов отмечались минимальные температуры за весь анализируемый срок наблюдений. Кроме того, примерно до середины 70-х годов амплитуда колебания температуры воздуха была гораздо более существенна, по сравнению со следующим периодом (Братков и др., 2005).

Отрицательные минимальные температуры характерны для пяти месяцев в году, начиная уже с ноября, и, соответственно, самая низкая температура бывает в январе -10,1ºС. Отрицательные максимальные температуры характерны только для января. В последующие месяцы рост показателей осуществляется примерно с разницей в два раза. Положительные максимальные температуры актуальны для трех летних месяцев и колеблются от 14,4ºС до 17,3ºС.

Для средних температур динамика показателей изменяется примерно в два раза. Отрицательные средние показатели характерны для четырех месяцев - декабрь, январь, февраль и даже март, причем низкий показатель встречается в январе, а немного «повыше», соответственно, в марте. Такие температурные вариации сокращают вегетационный период развития растительности и активный образ жизни беспозвоночных. Максимальные показатели средних температур выделяются в летние месяцы и диапазон колебаний составляет от 10,3ºС до 13,2ºС. Именно этот промежуток времени и характеризуется активизацией процессов жизнедеятельности беспозвоночных.

Наглядно динамику общих макроклиматических показателей можно проанализировать на примере метеоэлементов хребта Малая Хатипара.

Значительные колебания относительных высот в пределах хребта обусловили формирование вертикальных различий климата, растительности, почв и животного мира. При рассмотрении основных показателей метеоэлементов климата (таблица 2) —радиационного баланса, затрат тепла на испарение, индекса сухости, испаряемости — отмечается общая тенденция снижения показателей с высотой. Средние июльские температуры снижаются на 0,5° на каждые 100м, средние годовые - на 0,4°, радиационный баланс — на 0,7 ккал/см2, затраты тепла на испарение — на 0,19 ккал/см2, затраты тепла на нагревание - на 0,5 ккал/см2 на 100м. В то же время количество осадков и величина коэффициента увлажнения растут с высотой. Количество осадков возрастает на 64 мм на каждые 100 м, величина коэффициента увлажнения — на 0,4.

Составляющие теплового баланса с высотой меняются одинаково. Затраты тепла на испарение по всему профилю хребта изменяются мало, чего нельзя сказать о затратах тепла на нагревание. Годовые величины последних с высотой быстро уменьшаются. В данном случае показателен коэффициент отношения затрат тепла на испарение к затратам тепла на нагревание (LE/P). В долине Теберды величины LE и Р почти одинаковы, и коэффициент равняется 1,27. В пределах лугового пояса его величины возрастают до 2,0—2,13.

Уменьшение затрат тепла на нагревание с высотой сказывается на температурном режиме воздуха и характере испаряемости. В поясе луговых ассоциаций средние годовые температуры уже ниже нуля. Величины испаряемости не превышают 300мм, поэтому коэффициент увлажнения растет с 1,3 в долине Теберды до 4,8—5,8 в поясе луговых ассоциаций. Подобных значений коэффициента увлажнения у природных зон равнин умеренных широт не наблюдается (Шальнев, 1973).

При сравнении показателей таблицы 2 от подножия (1340м) к субальпийским лугам на высоте 2500м. над у.м., выявлено, что основные показатели метеоэлементов весьма высоки для станции 1, а на второй станции наблюдается спад показателей. От этой станции вполне упорядоченно возрастают метеоэлементы к типичной субальпике. Максимальные показатели температур характерны для высоты в 1340м, потом резкое падение для июльских температур на 4,3ºС, а для годовой – 1,9ºС и более плавное понижение, в результате которого годовая температура и температура воздуха в июле понижается на 0,6-1,0ºС, а годовая температура в диапазоне высот 2350-2500м даже понижается на 1,9ºС. При такой динамике температур минимальное количество осадков выпадает в хвойно-широколиственных лесах – 763 мм, затем повышается количество осадков, причем на 479 мм и на верхней границе пихтово-сосновых лесов составляет 1410 мм. А к субальпийским лугам количество осадков увеличивается плавно – на 84-168 мм. Но при таком росте количества осадков, влажность воздуха с высотой уменьшается: минимальная на станции 4 (68 мм), а максимальная – на станции 1 (76 мм). Радиационный баланс с высотой уменьшается от 38,0 ккал/см2 до 30,1 ккал/см2, причем разница между первыми двумя станциями составляет 6,9 ккал/см2. Расходная часть радиационного баланса, которая тратится на затраты тепла на испарение (LE) и турбулентный поток тепла в воздух (P). Вполне последовательно понижается показатели на испарение от 1340 м до 2500 м над у.м., с разницей 0,1 ккал/см2. Показатели P сначала понижаются на 6,3 ккал/см2, затем не изменяются на уровне высот 2050 м. и 2350 м и составляют 10,2 ккал/см2. На станции 4 показатель турбулентного потока тепла в воздух составляет всего лишь 10,2 ккал/см2. Затраты на испаряемость закономерно снижаются с 430 мм до 312 мм., это объясняется тем, что луговые ассоциации являются «открытым» участком, лишенным древесной и кустарниковой растительности. Соответственно, расходная часть радиационного баланса от леса к лугу возрастает.

Страницы: 1 2 3 4 5 6


Также смотрите: