Основные концепции физических пространства и времени:
Страница 3

Спустя почти 40 лет после работ Лобачевского, в 1867 г. была опубликована работа Б. Римана "О гипотезах, лежащих в основании геометрии". Опираясь на идею о возможности геометрии, отличной от евклидовой, Риман подошёл к этому вопросу с несколько иных позиций, чем Лобачевский. С точки зрения Римана, вопрос о том, является ли геометрия нашего физического пространства евклидовой, что соответствует его нулевой кривизне, или эта кривизна не равна нулю, должен решить эксперимент. При этом он допускает, что свойства пространства должны зависеть от материальных тел и процессов, которые в нём происходят.

Кроме того, Риман высказал новое понимание бесконечности пространства. По его мнению, пространство нужно признать неограниченным; однако если оно может иметь положительную постоянную кривизну, то оно уже не бесконечно, подобно тому, как поверхность сферы, хотя, и не ограничена, тем не менее, её размеры не являются бесконечными. Так зарождалось представление о разграничении бесконечности и безграничности пространства (и времени).

Идеи неевклидовых геометрий поначалу имели весьма мало сторонников, ибо противоречили "здравому смыслу" и устоявшимся в течении многих веков воззрениям. Перелом наступил лишь во второй половине XIX в. Окончательные сомнения в логической правильности неевклидовой геометрии Лобачевского были развеяны в работах итальянского математика Э. Бельтрами, который, развивая идеи К. Гаусса в области дифференциальной геометрии для решения задач картографии, показал, что на поверхностях постоянной отрицательной кривизны (псевдосферы) осуществляется именно неевклидова геометрия. Интерес к работам Лобачевского и Римана вновь ожил и вызвал многочисленные исследования в области неевклидовых геометрий и оснований геометрии.

Развитие теории неевклидовых пространств привело в свою очередь к задаче построения механики в таких пространствах: не противоречат ли неевклидовы геометрии принципам механики? Если механику невозможно построить в неевклидовом пространстве, то значит реальное неевклидово пространство невозможно. Однако исследования показали, что механика может быть построена и в неевклидовом пространстве.

И те не менее появление неевклидовых геометрий, а затем "неевклидовой механики" на первых порах не оказало влияния на физику. В классической физике пространство оставалось евклидовым, и большинство физиков не видели никакой необходимости рассматривать физические явления в неевклидовом пространстве.

Страницы: 1 2 3 


Также смотрите:

Периферический соматический отдел нервной системы
Периферический соматический отдел нервной системы обеспечивает осуществление ЦНС двигательных реакций. Соматические нервы образованы аксонами мотонейронов и аксоноподобными дендритами рецепторных нейронов, которые идут из ЦНС, спинномозговых и черепно-мозговых ганглие ...

Корневые гнили
Корневые гнили пшеницы, ржи, ячменя, овса относятся к числу внешне малозаметных, но весьма вредоносных заболеваний хлебных злаков. Возбудителями корневых гнилей яв­ляются широко распространенные виды грибов, живущие на обо­лочках и внутри семян, в почве и на остатках ...

Сущность жизни
Долгое время в науке господствовали два основных подхода к решению вопроса о сущности жизни: механицизм и витализм. Механистический материализм, характерный для классической науки Нового времени, не признавал качественной специфики живых организмов и представлял жизне ...