Мышечные веретена

Рецепторы растяжения в скелетных мышцах у млекопитающих демонстрируют те же механизмы действия, что и у ракообразных. Такие рецепторы растяжения в свое время были названы анатомами мышечными веретенами, поскольку они по форме напоминают веретена, используемые ткачами. Особенности того, как реагируют мышечные веретена, были исследованы Мэтьюзом в начале 1930-х годов. На протяжении многих лет его опыты оставались одним из лучших примеров всестороннего описания периферического органа чувств и механизмов управления его работой. Мэтьюзу удалось записать импульсы в одиночных нервных волокнах от отдельных веретен лягушек и кошек с помощью осциллоскопа, который он сконструировал для этой цели (в 1930 году это было настоящим подвигом).

Мышечные волокна в составе веретена (интрафузальные волокна) отличаются от основной мышечной массы (экстрафузальных волокон) во многих отношениях, включая молекулярную структуру содержащегося в них миозина. Они названы интрафузальными волокнами, от лат. fusus - веретено.

Сенсорный аппарат веретен в мышцах конечности кошки. Веретено состоит из капсулы, содержащей от 8 до 10 интрафузальных волокон. В центральной, или экваториальной, области каждого волокна находится большое скопление ядер. Их расположение дает основание для классификации интрафузальных волокон, которые подразделяют на сумчатые и цепочечные волокна (bag or chain fibers), в зависимости от того, сгруппированы ли ядра в центре или распределены линейно вдоль волокна.

Два типа сенсорных нейронов иннервируют каждое мышечное веретено. Более крупные нервные волокна, афференты группы la, имеют диаметр от 12 до 20 мкм и проводят импульсы со скоростью до 120 м/с. (Классификация волокон, которая используется здесь и является общепринятой. Их терминали обвиваются вокруг центральной части как сумчатых, так и цепочечных волокон, и формируют первичные окончания. Более мелкие сенсорные нервы (волокна группы II) имеют диаметр от 4 до 12 мкм и проводят импульсы гораздо медленнее. Они контактируют с цепочечными волокнами, где образуют вторичные окончания.


Также смотрите:

Свойства (признаки) живых систем
Итак, общими, характерными для всего живого свойствами и их отличиями от похожих процессов, протекающих в неживой природе, являются: 1) единство химического состава, 2) обмен веществ, 3) самовоспроизведение (репродукция), 4) наследственность, 5) изменчивость, 6) ...

Генетическая инженерия. История генетической инженерии
Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 ...

Гибридизация соматических клеток
Следующий метод клеточной селекции — создание неполовых гибридов путем слияния изолированных протопластов, полученных из соматических клеток. Этот метод позволяет скрещивать филогенетически отдаленные виды растений, которые невозможно скрестить обычным половым путем, ...