Основные группы ферментов генетической инженерии

Биология » рДНК-биотехнология. Способы биотрансформации клеток » Основные группы ферментов генетической инженерии

Генетическая инженерия - потомок молекулярной генетики, но своим рождением обязана успехам генетической энзимологии и химии нуклеиновых кислот, так как инструментами молекулярного манипулирования являются ферменты. Если с клетками и клеточными органеллами мы подчас можем работать микроманипуляторами, то никакие, даже самые мелкие микрохирургические инструменты не помогут при работе с макромолекулами ДНК и РНК. Что же делать? В роли "скальпеля", "ножниц" и "ниток для сшивания" выступают ферменты.

Только они могут найти определенные последовательности нуклеотидов, "разрезать" там молекулу или, наоборот, "заштопать" дырку в цепи ДНК. Эти ферменты издавна работают в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки. Задача генного инженера - подобрать фермент, который выполнил бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.

Следует отметить, что ферменты, применяемые в генной инженерии, лишены видовой специфичности, поэтому экспериментатор может сочетать в единое целое фрагменты ДНК любого происхождения в избранной им последовательности. Это позволяет генной инженерии преодолевать установленные природой видовые барьеры и осуществлять межвидовое скрещивание.

Ферменты, применяемые при конструировании рекомбинантных ДНК, можно разделить на несколько групп:

- ферменты, с помощью которых получают фрагменты ДНК (рестриктазы);

- ферменты, синтезирующие ДНК на матрице ДНК (полимеразы) или РНК (обратные транскриптазы);

- ферменты, соединяющие фрагменты ДНК (лигазы);

- ферменты, позволяющие осуществить изменение структуры концов фрагментов ДНК.


Также смотрите:

Цели и методы генетической инженерии
Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. На технологии рекомбинантных ДНК основано получение высокоспеци ...

Градиентная элюция
Вместо ступенчатой элюции может оказаться целесообразным постепенно увеличивать концентрацию соли, то есть перейти на элюцию непрерывным градиентом концентрации соли. Линейным или нелинейным - чтобы сократить разрыв между пиками. В ситуации, изображенной на рис. целе ...

Лиственные
Деревья. Семейство Березовые (Betulaceae) род Береза (Betula). В Мурманской области растут 2 вида берез Береза повислая (Betula pendula) и берёза пушистая (Betula pubescens). В лекарственных целях используют почки, листья, кору, березовый деготь. Чай из берёзовых л ...