Термодинамический подход.
Страница 1

В классической науке (XIX в.) господствовало убеждение, что материи изначально присуща тенденция к разрушению всякой упорядоченности, стремление к исходному равновесию, что энергетическом смысле и означало неупорядоченность, т.е. хаос. Такой взгляд на вещи сформировался под воздействием равновесной термодинамики.

Эта наука занимается процессами взаимопревращения различных видов энергии. Ею установлено, что взаимные превращения тепла и работы неравнозначны. Работа может полностью превратиться в тепло трением или другими способами, а вот тепло полностью превратить в работу принципиально не возможно. Это означает, что во взаимных переходах одних видов энергии в другие существует выделенная самой природой направленность. Знаменитое второе начало термодинамики в формулировке немецкого физика Р. Клаузиуса звучит так «Теплота не переходит самопроизвольно от холодного тела к более горячему». Закон сохранения и превращения энергии в принципе не запрещает такого перехода, лишь бы количество энергии сохранялось в прежнем объеме. Но в реальности такого никогда не происходит. Вот эту-то односторонность, однонаправленность перераспределения энергии в замкнутых системах и подчеркивает второе начало.

Для отражения этого процесса в термодинамику было введено новое понятие — энтропия. Под энтропией стали понимать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: «При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает». Физический смысл возрастания энтропии сводится к тому, что состоящая из некоторого множества частиц изолированная (с постоянной энергией) система стремится перейти в состояние с наименьшей упорядоченностью движения частиц. Это — наиболее простое состояние системы, или состояние термодинамического равновесия, при котором движение частиц хаотично. Максимальная энтропия означает полное термодинамическое равновесие, что эквивалентно полному хаосу [6].

Общий итог достаточно печален: необратимая направленность процессов преобразования энергии в изолированных системах рано или поздно приведет к превращению всех видов энергии в тепловую, которая рассеется, т.е. в среднем равномерно распределится между всеми элементами системы, что и будет означать термодинамическое равновесие, или полный хаос. Если наша Вселенная — замкнута, то ее ждет именно такая незавидная участь. Из хаоса, как утверждали древние греки, она родилась, в хаос же, как предполагает классическая термодинамика, и возвратится.

Возникает, правда, любопытный вопрос: если Вселенная эволюционирует только к хаосу, то, как же она могла возникнуть и сорганизоваться до нынешнего упорядоченного состояния? Однако этим вопросом классическая термодинамика не задавалась, ибо формировалась в эпоху, когда нестационарный характер Вселенной даже не обсуждался. В это время единственным немым укором термодинамике служила дарвиновская теория эволюции. Ведь предполагаемый этой теорией процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса, Такая явная «нестыковка» законов развития неживой и живой природы, по меньшей мере, удивляла.

Удивление это многократно возросло после замены модели стационарной Вселенной на модель развивающейся Вселенной, в которой ясно просматривалось нарастающее усложнение организации материальных объектов — от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до наблюдаемых ныне звездных и галактических систем. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным «возмущением» в целом равновесной Вселенной их уже не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции.

Страницы: 1 2


Также смотрите:

Структура научного знания
Под термином «наука» обычно понимается особая сфера деятельности людей, главной целью которой является выработка и теоретическая систематизация объективных знаний обо всех сторонах и областях действительности. При таком понимании сущности науки она представляет собой ...

Свободные аминокислоты нервной системы
Аминокислоты являются для нервной ткани источником синтеза большого числа биологически важных соединений, таких как специфические белки, пептиды, нейромедиаторы, гормоны, витамины, биологически активные амины и др. Существенна также их энергетическая значимость, поско ...

Охарактеризуйте механизм действия адреналина и глюкагона на липидный обмен
Ответ. Обмен липидов регулируется ЦНС. Кора большого мозга оказывает трофическое влияние на жировую ткань либо через нижележащие отделы ЦНС – симпатическую и парасимпатическую системы, либо через эндокринные железы. В настоящее время установлен ряд биохимических меха ...