Действие низкой температуры на растения
Страница 5

Биология » Действие низкой температуры на растения

Аналогичные результаты были получены и при изучении других видов растений. Было проведено определение морозоустойчивости побегов, корней и тканей эпикотиля гороха сорта Alaska двух генотипов: дефицитного по содержанию абсцизовой кислоты мутанта «wil» и его дикого типа при различных типах стресса. В ходе исследований спектры белков изучались при помощи двумерного SDS-PAGE электрофореза. При этом было установлено, что холодовая обработка индуцировала образование семи белков в побегах, трех – в эпикотиле и двух – в корнях гороха. В тканях побегов пять из семи новых белков накапливались также в ответ на обработку абсцизовой кислотой. Полипептид с молекулярной массой 24 кДа продуцировался и в мутантных, и в «диких» проростках и тканях эпикотиля только после холодовой обработки.

Таким образом, существенным этапом перехода от стрессовых к адаптационным реакциям является изменение экспрессии генов, выражающееся в ингибировании активных генов, в норме контролирующих рост, развитие и фотосинтез. При этом активируется система генов контроля за устойчивостью: происходит синтез новых белков, специфических адаптогенов и стресс-протекторов. Завершается эта перестройка структурными изменениями в организме растения.

Успешное зимнее выживание вечнозеленых травянистых растений, подобных белому клеверу, зависит от соответствующе синхронизации процессов как закаливания, так и раззакаливания. Изучение регулирования этих процессов было проведено у двух сортов белого клевера «AberCrest» и «AberHerald» и двух его норвежских экотипах. Для проведения закаливания и раззакаливания растения экспонировались при контролируемых температурных условиях. Низкотемпературное закаливание столонов проводилось путем программируемого снижения температуры со скоростью 3°C в час. Во время эксперимента анализировались содержание крахмала, растворимых сахаров и растворимых аминокислот в столонах. Сорта AberCrest и AberHerald, происходящие из Великобритании и выбранные для контроля скорости роста при низко температуре и степени зимнего закаливания, были значительно менее устойчивы, чем норвежские популяции. Степень раззакаливания растени увеличивалась с повышением температуры. В условиях действия низко температуры северный экотип из Bodo был более устойчив к раззакаливанию, чем AberHerald. Тем не менее, при 18°C абсолютны уровень раззакаливания у растений экотипа Bodo был в два раза выше, чем у растений AberHerald. Удлинение столонов в растениях AberHerald начиналось во время раззакаливания при более низких температурах, чем в растениях экотипа Bodo. Содержание общих растворимых сахаров, сахарозы и аминокислот пролина и аргинина было значительно выше в закаленных растениях экотипа Bodo, чем в растениях сорта AberHerald. Уровень сахарозы уменьшался в течение раззакаливания. Корреляция между содержанием сахарозы и LT50 в течение этого процесса была статистически достоверно.

Установлено, что одним из криопротекторов в растениях является глицинбетаин. Это вещество накапливается в хлоропластах определенных солеустойчивых растений при солевом или холодовом стрессах. Ген codA для холиноксидазы, преобразовывающей холин в глицинбетаин, был клонирован в почвенной бактерии Arthrobacter globiformis. Трансформация Arabidopsis thaliana с клонированным геном codA под управлением 35S промотора мозаичного вируса цветной капусты позволила растению накапливать глицинбетаин и увеличить устойчивость к солевому и холодовому стрессам. Значительная часть семян трансформированных растений хорошо прорастала в 300 мл NaCl, в то время как семена растений дикого генотипа в данных условиях не прорастали. В растворе NaCl трансформированные растения хорошо росли, в то время как растения дикого типа не были способны расти в данных условиях. Трансформированные растения были способны переносить концентрацию 200 мл NaCl, которая была летально для растений дикого типа. После того, как растения были инкубированы в течение двух дне в растворе с повышенно концентрацией NaCl, активность фотосистемы II растений дикого типа была почти полностью подавлена, в то время как в трансформированных растениях она составляла более 50% от исходного уровня. После обработки растений низко температурой на свету в листьях дикого типа наблюдались симптомы хлороза, в то время как у трансформированных растений они отсутствовали. Эти наблюдения показывают, что генетическая трансформация, позволяющая накапливать глицинбетаин Arabidopsis thaliana, увеличивает способность растения переносить солевой и низкотемпературный стрессы.

Страницы: 1 2 3 4 5 6


Также смотрите:

Генная инженерия. Практические результаты.
Эмбриогенез — это феноменальный процесс, при котором информация, заложенная в линейной структуре ДНК, реализу­ется в трехмерный организм. ДНК представляет запись после­довательности аминокислот для построения молекул различных белков. В эмбриональном развитии в разно ...

Химическая природа и свойства витамина В6.
По своей природе витамин В6 является производным пиридина. Витамин В6 - белый кристаллический порошок, растворим в воде и спирте, но плохо растворим в эфире и хлороформе. Он имеет температуру плавления 160°,обладает горьким вкусом. Максимумы спектров поглощения находя ...

Бонитировка угодий района по косуле
Хорошие угодья (I бонитета) – угодья, в которых преобладают свойственные и благоприятные для обитания типы угодий. Непригодных для вида нет. Защитно-гнездовые условия хорошие. В таких угодьях имеется обильный и разнообразный набор кормов, устойчивый по годам. Это стац ...