Скорость распространения возбуждения

Биология » Первые шаги электробиологии » Скорость распространения возбуждения

В 1846 г. И. Мюллер писал: "Время, необходимое для передачи ощущения с периферии тела в мозг и для возвращения возбуждения к мышцам, бесконечно мало и измерено быть не может". Однако всего через 4 года это время удается измерить.

Мюллер, как мы упоминали, считал возбуждение проявлением "жизненной силы", а как она распространяется - кто знает! Но и электрический сигнал по проводам тоже распространяется почти мгновенно - это уже было известно. Если считать, что возбуждение, идущее по нерву, имеет электрическую природу, то, по-видимому, бессмысленно пытаться измерить его скорость - слишком малы расстояния. И все же нашелся человек, который сделал такую попытку: зто был друг Дюбуа-Реймона, замечательный ученый Герман Гельмгольц.

В 1850 г. Гельмгольц был профессором физиологии Кенигсберского университета. Там он и придумал несколько вариантов опытов для измерения скорости возбуждения. Один из вариантов опыта выглядел так. На вращающийся барабан была намотана закопченная бумага. Гельмгольц брал нервно-мышечный препарат и закреплял мышцу около барабана. К мышце прикреплялось перо, так что сокращение мышцы вызывало след на движущейся бумаге. Когда нерв раздражался, момент раздражения с помощью специального устройства отмечался на ленте. На той же бумажной ленте было видно, через какой промежуток времени отвечает сокращением мышца. Так можно было узнать время от момента раздражения нерва до начала сокращения мышцы. Но толку от этого было мало: ведь за это время возбуждение должно было дойти по нерву до мышцы, передать мышце сигнал к сокращению, после чего в мышце должен был развиться процесс сокращения.

Как разделить все эти времена? Гельмгольц придумал такой способ. Он раздражал нерв вторично, но в другом месте, например на расстоянии 5 см от первой точки раздражения. Теперь сокращение мышцы наступало немного позднее, считая от момента раздражения. Разница этих времен могла зависеть только от того, что возбуждение прошло лишние 5 см. Зная скорость вращения барабана, можно было определить время запаздывания, а так как расстояние между двумя точками раздражения нерва было известно, можно было определить и скорость распространения возбуждения по волокну.

Оказалось, что возбуждение распространяется по нерву со скоростью всего 30 м/с, т.е. в сто миллионов раз медленнее, чем электрический сигнал, и даже в десять раз медленнее, чем звук! Этот результат, с одной стороны, был сильным ударом по представлениям о мгновенно распространяющейся "жизненной силе", но, с другой стороны, поставил перед электробиологией новый сложный вопрос: чем же объясняется такое сильное отличие этой скорости от скорости распространения электрического сигнала в металлах и электролитах? Получается, что "животное электричество" не так-то просто поддается объяснению с помощью тех понятий, которые были выработаны для электричества "неживого", чисто физического. В связи с этим возобновились разговоры об особых свойствах "животного электричества", в то время как другие ученые высказывали сомнение об электрической природе распространения возбуждения по нервным волокнам.


Также смотрите:

Суточная потребность в фолиевой кислоте.
Суточная потребность в фолиевой кислоте у человека 1-2 мг, лечебная доза 10-20-30 мг. Фолиевая кислота широко распространена как в животных, так и в растительных организмах. Она находится в селезёнке, почках, печени, но в небольших количествах. Из одной тонны печен ...

Пространственно-временная организация памяти. Информационная емкость нейрологической памяти
Механизмы работы памяти, особенно такие, как процессы хранения и извлечения информации – основа всех психических процессов, следовательно, они представляют наибольший интерес для изучения в когнитивной психологии. Еще И.М. Сеченов указывал на то, что память является ...

Строение нуклеиновых кислот.
Строение простых нуклеиновых кислот (нуклеотидов) в настоящее время хорошо изучено. Уставлено, что адениловая кислота при гидролизе распадается на углевод (пентозу), фосфорную кислоту и азотистое основание - аденин. В адениловой кислоте мышечной ткани фосфорная кислот ...