Свободные аминокислоты нервной системы
Аминокислоты являются для нервной ткани источником синтеза большого числа биологически важных соединений, таких как специфические белки, пептиды, нейромедиаторы, гормоны, витамины, биологически активные амины и др. Существенна также их энергетическая значимость, поскольку аминокислоты глутаминовой группы связаны с циклом трикарбоновых кислот.
Состав пула свободных аминокислот при нормальных физиологических условиях достаточно стабилен и характерен для мозга. Аминокислотный фонд мозга человека составляет в среднем 34 мкмоль на 1 г ткани, что превышает их содержание, как в плазме крови, так и в спинномозговой жидкости. Высокая концентрация – 75% фонда всех свободных аминокислот – приходится на дикарбоновые кислоты и их производные: глутаминовую кислоту, глутамин, аспарагиновую, N‑ацетиласпарагиновую и γ-аминомасляную (ГАМК) кислоты, причем ГАМК и N‑ацетиласпарагиновая кислоты локализованы почти исключительно в нервной ткани [2].
Постоянство качественного и количественного состава аминокислот в метаболических фондах мозга обеспечивается такими взаимосвязанными процессами, как поступление аминокислот из циркулирующей крови, отток их из мозга в кровь и участие в реакциях внутриклеточного метаболизма. В организме все эти процессы сбалансированы слаженным функционированием гомеостатических механизмов гематоэнцефалического барьера и мембранным транспортом аминокислот [3].
Системы активного транспорта аминокислот в мозг и из него энергозависимы. Изучение конкурентных отношений в транспорте аминокислот выявило наличие восьми типов транспортных систем, которые существуют для аминокислот с родственной структурой и зависят от ионного заряда и размеров их молекул.
Для мембранного транспорта аминокислот характерен ряд особенностей:
- перенос аминокислот часто происходит против высоких концентрационных градиентов;
- этот процесс энергозависим:
- на него влияют температура и рН среды;
- он ингибируется анаэробным состоянием клеток;
- перенос аминокислот связан с активным мембранным транспортом ионов, например он Na+-зависим;
- обнаружено конкурентное торможение мембранного транспорта одних аминокислот другими [3, 6].
Особенно велика специфичность и мощность транспортных систем для аминокислот, выполняющих роль медиаторов (глицин, ГАМК, таурин, глутаминовая кислота и др.). Эти системы не только обеспечивают пластические и энергетические нужды клетки, но и служат также для специфического быстрого снижения концентрации тормозных нейромедиаторов (глицин, ГАМК) в зоне синаптической щели.
Также смотрите:
Сравнительная характеристика форм изменчивости
СвойствоНаследственная
Ненаследственная
Наследственная
Объект изменений
Фенотип в пределе нормы реакции
Генотип
Фактор возникновения
Изменения условий окружающей среды
Рекомбинация генов вследствие слияния гамет, кроссинговер, мутации ...
Микробиологическое восстановление
Этот процесс используется в меньшей степени, чем дегидрирование. Он осуществляется главным образом дрожжами и анаэробными бактериями, представителями микрофлоры кишечника млекопитающих, осуществляющими превращение холестерина в копростерин:
Описаны процессы насыщен ...
Сильная и слабая связь
Несмотря на открытие специфических механизмов, управляющих синтезом макромолекул, нельзя, однако, игнорировать тот факт, что все биохимические процессы в клетке так или иначе связаны между собой. Именно эта связь обеспечивает органическое единство живой клетки. Мы поп ...
