Особенности описания сложных системСтраница 2
Математические модели любых систем могут быть двух типов - эмпирические и теоретические.[13] Эмпирические модели - это математические выражения, аппроксимирующие экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.
Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.
Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.
Построение эмпирических моделей - единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме.[14] Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.
Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.
Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.
Строго обосновать выражение "модели относятся к одному и тому же классу" несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т.п.
Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе
Также смотрите:
Промежуточный мозг
Промежуточный мозг представляет собой самостоятельное структурно-физиологическое образование ЦНС, нейроны которого имеют большую физиологическую значимость в нервных центрах. В нем выделяют три основных самостоятельных структуры: таламус, или зрительные бугры, гипотал ...
А теперь о грустном
«Солнцезащитные кремы защищают кожу только от ожога, — говорит онкодерматолог Онкологического научного центра РАМН Валерий Мусатов. — Но ни один из них не защищает ее от спровоцированного солнцем возникновения рака кожи. Тем временем во многих странах наблюдается, мож ...
Роль хаоса в эволюции
Путь хаоса, термодинамическая ветвь остается как один из возможных путей эволюции в открытых нелинейных средах. Необходимо осознавать конструктивную роль хаоса в эволюции. Например, аналогом хаоса в социальной области является рынок, рынок в обобщенном смысле, не толь ...
