Математические знания.
Страница 2

Поэтому у них не вызывали мировоззренческих проблем вопросы о природе несоизмеримых отношений и иррациональных чисел.

На современном математическом языке те типовые задачи, которые могли решать вавилоняне, выглядят следующим образом:

Алгебра и арифметика:

уравнения с одним неизвестным:

АХ=В; Х2=А; Х2±АХ=В; Х3=А; Х2(Х+1)=А;

системы уравнений с двумя неизвестными

ХY=B, X±Y=A;

Х2+Y2=B, X±Y=A;

им были известны следующие формулы:

(А+В)2=А2+2АВ+В2

(А+В)(А-В)=А2-В2

1+2+4+…+2n=2n+(2n-1)

12+22+32+…+N2=(⅓+⅔N)(1+2+3+…+N)

и суммирование арифметических прогрессии.

Геометрия:

пропорциональность для параллельных прямых;

теорема Пифагора;

площадь треугольника и трапеции;

площадь круга ≈ 3R2;

длина окружности ≈6π;

объем призмы и цилиндра;

объем усеченного конуса они считали по неправильной формуле:

½(3R2 + 3r2) (на самом деле он равен ⅓(R2 - r2)).

Объем усеченной пирамиды с высотой H, квадратным верхним (В) и нижним (А) основаниями они определяли по неправильной формуле: ½(А2 + B2); на самом деле он равен ⅓ (А2 + АВ + B2)Н.

Основная общая особенность и общий исторический недостаток древневосточной математики — ее преимущественно рецептурный, алгоритмический, вычислительный характер. Математики Древнего Востока даже не пытались доказывать истинность тех вычислитель­ных формул, которые они использовали для решения конкретных практических задач. Все такие формулы строились в виде предписа­ний: «делай так-то и так-то». Потому и обучение математике состояло в механическом зазубривании и заучивании веками не изменявшихся способов решения типовых задач. Идеи математического доказатель­ства в древневосточной математике еще не было.

Вместе с тем у древних вавилонян уже складывались отдельные предпосылки становления математического доказательства. Они

со­стояли в процедуре сведения сложных математических задач к про­шлым (типовым) задачам, а также в таком подборе задач, который позволял осуществлять проверку правильности решения.

Страницы: 1 2 


Также смотрите:

Развитие конечностей
Вторым новшеством, естественно последовавшим за упрочением неокинетической системы с ее суставчатыми рычагами и поперечнополосатыми мышцами, было развитие у животных конечностей. У низших, бесскелетных организмов не было конечностей, в лучшем случае вместо них иногда ...

Анализ субклеточных фракций
Свойства полученного при фракционировании препарата субклеточных частиц можно отнести к свойствам самих частиц только в том случае, если препарат не содержит примесей. Следовательно, всегда необходимо оценивать чистоту получаемых препаратов. Эффективность гомогенизаци ...

Размножение
Почти все одноклеточные водоросли способны размножаться простым делением. Клетка делится надвое, обе дочерние клетки - тоже, и этот процесс в принципе может идти до бесконечности. Поскольку клетка погибает только в результате "несчастного случая", можно гово ...