Автоматический секвенаторСтраница 1
Конструкция модели секвенатора ДНК. Эти конструкции непрерывно совершенствуются. Однако принципиальные черты устройства автоматических секвенаторов, по-видимому, в ближайшие годы сохранятся для всех моделей. Поэтому здесь я остановлюсь более или менее подробно на описании основных элементов конструкции прибора ABI Prism 377, выпущенного в 1995 году.
В основном блоке электрофореза, как и в любом приборе с вертикально стоящими пластинами, имеются верхний и нижний резервуары для буфера, электроды и источник напряжения. Ввиду последующего оптического сканирования обеспечивается строго фиксированная установка сменных пластин с ПААГ. Возможно использование гелей различной концентрации (обычно в пределах 4,5-6%). Толщина геля — менее 1 мм. Ширина рабочей его части — 16 см. Длину пластины можно выбрать в 24, 34 и 48 см. В верхней части геля имеется 36 карманов для препаратов. Таким образом электрофорез можно вести одновременно в 36 треках. Предусмотрен отвод выделяющегося при этом тепла.
Особенностью готовой пластины с гелем является наличие «окна» в нижней части пластины. Окно высотой в 2 см вырезано по всей ширине рабочей части пластины и отстоит на 2,5 см от ее нижнего края. Наличие окна связано с принципиально иным, чем было описано ранее, способом регистрации полос после прекращения электрофореза, обусловленного тем, что наиболее быстро мигрирующая полоса достигала нижнего края пластины. В этом случае медленно мигрирующие полосы, соответствующие более крупным отрезкам ДНК, теснились в верхней части геля и были трудноразделимы при анализе рентгеновской пленки.
В автоматическом секвенаторе полосы в геле проходят мимо окна, регистрируются в процессе этого прохождения и далее покидают гель, уходя в резервуар с нижним буфером. При достаточной продолжительности, электрофореза (16—20 часов) мимо окна проходят все полосы, в том числе те, в которых мигрируют самые длинные отрезки ДНК, несущие флюоресцентную метку. Регистрация производится оптическим способом — по флюоресценции. Для этой цели используется следующий набор инструментов:
1. Луч аргонового лазера фокусируется в точку на середине высоты окна. Сам лазер установлен на каретке возвратно-поступательно перемещающейся на всю ширину окна, прочерчивая таким образом тонкую линию, пересекающую все треки разделения ДНК. За то время, когда в каком-либо из треков мимо окна проходит одна из полос, содержащая меченые отрезки ДНК определенной длины, эта полоса сканируется лучом лазера много раз по всей ее толщине в направлении миграции.
2. Возникающее при этом излучение флюоресценции определенного цвета (и постепенно изменяющейся интенсивности) проецируется оптической системой на входную щель спектрофотометра и падает на отражающую дифракционную решетку. В зависимости от длины волны флюоресценции дифракционная решетка отражает цветной луч в определенное положение на выходе спектрофотометра. Информация об этом положении поступает в компьютер, обеспечивая идентификацию дидезоксирибонуклеотида, которым заканчиваются данные отрезки ДНК.
3. Выходя из спектрофотометра, луч попадает в камеру для измерения его интенсивности, где используется явление фотоэлектронной эмиссии. Соответствующий электрический сигнал также поступает в компьютер.
4. В компьютере регистрируются и все перемещения лазера поперек пластины геля, что позволяет разнести вышеназванную информацию по его трекам.
5. Для каждого трека отдельно, по мере прохождения в нем полос любого цвета флюоресценции, компьютер ведет их счет, определяя тем самым последовательность нуклеотидов во всех секвенируемых одновременно фрагментах ДНК.
6. Все картины прохождения флюоресцирующих полос мимо окна пластины в каждом треке в реальном времени проецируются на дисплей прибора.
Также смотрите:
Анализ субклеточных фракций
Свойства полученного при фракционировании препарата субклеточных частиц можно отнести к свойствам самих частиц только в том случае, если препарат не содержит примесей. Следовательно, всегда необходимо оценивать чистоту получаемых препаратов. Эффективность гомогенизаци ...
Химическая природа и физико-химические свойства.
Витамин Е или токоферол, представляет собой маслянистую жидкость желтоватого цвета. Каррер в 1938 г. получил α - токоферол синтетически из триметилгидрохинона и фенилбромида.
В настоящее время получено 7 различных токоферолов, незначительно отличающихся один от ...
"Волна возбуждения"
Это сомнение было развеяно учеными младшего поколения школы Дюбуа-Реймона, в дальнейшем ставшими главными героями науки о "животном электричестве", - Юлиусом Бернштейном и Людвигом Германом. Они сильно продвинули вперед изучение "белого пятна" в яв ...