Автоматический секвенатор
Страница 2

7. По окончании процесса электрофореза полученные данные обрабатываются компьютером и печатаются в виде четырехцветных графиков для каждого трека, где видна вся картина следования пиков, их нумерация и однобуквенные обозначения соответствующих нуклеотидов. Благодаря измерению интенсивности каждого цвета флюоресценции вершины пиков хорошо различимы.

Здесь необходимо сделать небольшое отступление. Хотя и было сказано, что рассматривать различные модели секвенаторов не имеет смысла, об одной из них, принадлежащей к последнему поколению, стоит вкратце написать и вот почему. Принципиальное его устройство такое же, но в интересах дальнейшего повышения продуктивности применена новинка, общие перспективы которой следует обсудить. Электрофорез в этом приборе ведут не на пластине геля, а в капиллярах! Вот, как это делается.

В прибор (Beckman СЕФ-2000) устанавливают плашку на 96 лунок (12 рядов по 8 лунок), куда заранее вносят продукты реакций, проведенных по тому же методу Сэнджера с четырьмя люминесцентно мечеными дидезоксирибонуклеотидами. Тандемом к ней ставят вторую точно такую же плашку, лунки которой заполнены буфером. Сам ПААГ готовят так, что он не может запо-лимеризоваться до твердого состояния, а представляет собой вязкую жидкость. Прибор заряжают картриджем, заполненным таким гелем. Восемь тонких и гибких пластмассовых капилляров, длиной около метра, с одного конца закреплены в пластине так, что расстояние между ними равно расстоянию между лунками одного ряда плашки. Концы капилляров выступают из пластины и одеты металлическими трубочками, электрически соединенными с катодом источника высокого напряжения. Благодаря этому в каждую лунку, куда опускаются кончики капилляров, подается отрицательное напряжение электрофореза. Вторые концы капилляров собраны в некий зажим, где они располагаются в одной плоскости вплотную друг к другу. Выходя из дальнего конца этого зажима все восемь капилляров открываются в одну емкость с буфером, куда подается положительное напряжение электрофореза. Но перед этим в окне зажима, против которого приходятся прозрачные участки капилляров, все они сканируются лучом лазера и «отвечают» на это флюоресценцией проходящего мимо фрагмента ДНК. Далее все происходит так же, как описано для секвенатора с пластиной геля.

Но вернемся к началу операции. Первоначально пустые капилляры при помощи насоса целиком заполняются гелем из картриджа. Затем концы их автоматически переносятся и опускаются в восемь лунок первого ряда плашки препаратов. Включается умеренное напряжение и все отрицательно заряженные фрагменты ДНК в течение нескольких секунд входят в гель — из каждой лунки в «свой» капилляр. После этого концы капилляров автоматически переносят в лунки первого ряда плашки с буфером. Напряжение повышается до рабочей величины электрофореза, который продолжается 2 часа. По его окончании гель, с помощью того же насоса выталкивается из капилляров, а сами они промываются водой. Затем капилляры заполняются новыми порциями геля и все операции повторяются для второго ряда лунок с препаратом. И так до последнего, 12-го ряда. За 24 часа прибор может провести электрофорез 96-ти препаратов. Если в одном капилляре удается расшифровать последовательность в 500 нуклеотидов, то всего за одни сутки прибор может определить последовательность для 49 тысяч нуклеотидов. Кроме того оператор освобождается от трудоемкого приготовления пластин с гелем и деликатной операции внесения исходных препаратов в его «карманы».

Технический прогресс впечатляет. Но поясню, ради чего было сделано это отступление. Каковы перспективы электрофореза в капиллярах? Не вытеснит ли он классический метод электрофореза в пластинах? Думаю, что не вытеснит и вот почему. В капиллярном методе у экспериментатора нет возможности получить в свое распоряжение сам чистый гель без оболочки, а значит и решить целый ряд задач, описанных в гл. 6. К примеру, как использовать электрофорез в капиллярах для сравнения картин распределения по размерам белков или НК разного происхождения? Пометить их всех люминесцентной меткой и протягивать сплошь прозрачные капилляры мимо лазера, фиксируя времена прохождения каждого из белков или НК? Сложно! А если возникнет необходимость подробнее познакомиться с одним из белков? Найти его снова по времени регистрации и вырезать кусочек капилляра? Или, не меняя описанной конструкции фиксировать времена выхода всех белков из капилляров и сохранять их для последующего анализа? Тогда для каждого капилляра надо поставить свой коллектор фракций, как при хроматографии! А если белки или НК помечены радиоактивной меткой? Укладывать капилляры с гелем на рентгеновскую пленку? Для регистрации в таких условиях потребуется очень большая радиоактивность. Еще хуже с использованием иммунохимических методов для отыскания нужного антигена после электрофореза смеси белков. К белкам в капилляре не подобраться. Значит тестировать антисывороткой поодиночке каждый белок в варианте с коллекторами фракции? И так далее.

Страницы: 1 2 3 4


Также смотрите:

Структурные уровни организации материи. Микро, макро, мега миры
Микромир – это молекулы, атомы, элементарные частицы - мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни - от бесконечности до 10-24 с. Макромир - мир устойчивых фо ...

Биотин - витамин Н (биосII).
В начале XX столетия было доказано, что для роста дрожжей нужен особый фактор. Этот фактор получил название ”биос”. В дальнейшем оказалось, что это не одно вещество, а нескольких веществ различающихся между собой по физико-химическим свойствам. Из биоса было выделено ...

Закон единообразия гибридов первого поколения (первый закон Менделя)
Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F 1), все особи которого гетерозиготны. Все гибриды F 1 могут иметь при этом либо фенотип одного из ро ...